skip to main content


Search for: All records

Creators/Authors contains: "Joseph, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Time-resolved microscopy is a widely used approach for imaging and quantifying charge and energy transport in functional materials. While it is generally recognized that resolving small diffusion lengths is limited by measurement noise, the impacts of noise have not been systematically assessed or quantified. This article reports modeling efforts to elucidate the impact of noise on optical probes of transport. Excited state population distributions, modeled as Gaussians with additive white noise typical of experimental conditions, are subject to decay and diffusive evolution. Using a conventional composite least-squares fitting algorithm, the resulting diffusion constant estimates are compared with the model input parameter. The results show that heteroscedasticity (i.e., time-varying noise levels), insufficient spatial and/or temporal resolution, and small diffusion lengths relative to the magnitude of noise lead to a surprising degree of imprecision under moderate experimental parameters. Moreover, the compounding influence of low initial contrast and small diffusion length leads to systematic overestimation of diffusion coefficients. Each of these issues is quantitatively analyzed herein, and experimental approaches to mitigate them are proposed. General guidelines for experimentalists to rapidly assess measurement precision are provided, as is an open-source tool for customizable evaluation of noise effects on time-resolved microscopy transport measurements.

     
    more » « less
    Free, publicly-accessible full text available March 28, 2025
  2. This paper investigates the decision-making outcomes and cognitive-physical load implications of integrating a Building Information Modeling-driven Augmented Reality (AR) system into retrofitting design and how movement is best leveraged to understand daylighting impacts. We conducted a study with 128 non-expert participants, who were asked to choose a window facade to improve an interior space. We found no significant difference in the overall decision-making outcome between those who used an AR tool or a conventional desktop approach and that greater eye movement in AR was related to non-experts better balancing the complicated impacts facades have on daylight, aesthetics, and energy. 
    more » « less
    Free, publicly-accessible full text available March 16, 2025
  3. Free, publicly-accessible full text available April 2, 2025
  4. Lack of proper nutrition has important consequences for the physiology of all organisms, and nutritional status can affect immunity, based on many studies in terrestrial animals. Here we show a positive correlation between nutrition and immunity in the sea anemoneNematostella vectensis. Gene expression profiling of adult anemones shows downregulation of genes involved in nutrient metabolism, cellular respiration, and immunity in starved animals. Starved adult anemones also have reduced protein levels and activity of immunity transcription factor NF-κB. Starved juvenile anemones have increased sensitivity to bacterial infection and also have lower NF-κB protein levels, as compared to fed controls. Weighted Gene Correlation Network Analysis (WGCNA) is used to identify significantly correlated gene networks that were downregulated with starvation. These experiments demonstrate a correlation between nutrition and immunity in an early diverged marine metazoan, and the results have implications for the survival of marine organisms as they encounter changing environments.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  5. Augmented Reality (AR) tools have shown significant potential in providing on-site visualization of Building Information Modeling (BIM) data and models for supporting construction evaluation, inspection, and guidance. Retrofitting existing buildings, however, remains a challenging task requiring more innovative solutions to successfully integrate AR and BIM. This study aims to investigate the impact of AR+BIM technology on the retrofitting training process and assess the potential for future on-site usage. We conducted a study with 64 non expert participants, who were asked to perform a common retrofitting procedure of an electrical outlet installation using either an AR+BIM system or a standard printed blueprint documentation set. Our findings indicate that AR+BIM reduced task time significantly and improved performance consistency across participants, while also decreasing the physical and cognitive demands of the training. This study provides a foundation for augmenting future retrofitting construction research that can extend the use of AR+BIM technology, thus facilitating more efficient retrofitting of existing buildings. A video presentation of this article and all supplemental materials are available at https://github.com/DesignLabUCF/SENSEable_RetrofittingTraining. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  6. A review on the selective catalytic hydrodeoxygenation of lignin biomass derived compounds. The focus is on recent reports which highlight achievements in selectively and reactivity trends which lead to deoxygenated aromatic products.

     
    more » « less
    Free, publicly-accessible full text available October 10, 2024
  7. ABSTRACT

    We present the RASS-MCMF catalogue of 8449 X-ray selected galaxy clusters over 25 000 deg2 of extragalactic sky. The accumulation of deep multiband optical imaging data, the development of the Multi-Component Matched Filter (MCMF) cluster confirmation algorithm, and the release of the DESI Legacy Survey DR10 catalogue makes it possible – for the first time, more than 30 yr after the launch of the ROSAT X-ray satellite – to identify the majority of the galaxy clusters detected in the second ROSAT All-Sky-Survey (RASS) source catalogue (2RXS). The resulting 90 per cent pure RASS-MCMF catalogue is the largest intracluster medium (ICM)-selected cluster sample to date. RASS-MCMF probes a large dynamic range in cluster mass spanning from galaxy groups to the most massive clusters. The cluster redshift distribution peaks at $z$ ∼ 0.1 and extends to redshifts $z$ ∼ 1. Out to $z$ ∼ 0.4, the RASS-MCMF sample contains more clusters per redshift interval (dN/dz) than any other ICM-selected sample. In addition to the main sample, we present two subsamples with 6912 and 5506 clusters, exhibiting 95 per cent and 99 per cent purity, respectively. We forecast the utility of the sample for a cluster cosmological study, using realistic mock catalogues that incorporate most observational effects, including the X-ray exposure time and background variations, the existence likelihood selection and the impact of the optical cleaning with the algorithm MCMF. Using realistic priors on the observable–mass relation parameters from a DES-based weak lensing analysis, we estimate the constraining power of the RASS-MCMF×DES sample to be of 0.026, 0.033, and 0.15 (1σ) on the parameters Ωm, σ8, and $w$, respectively.

     
    more » « less
  8. Denazinemys nodosais a Late Cretaceous representative of the North American turtle clade Baenidae diagnosed, among others, by a shell surface texture consisting of raised welts. We provide a detailed description of a partial skeleton from the late Campanian Kaiparowits Formation of Utah, USA, including bone-by-bone analysis of its cranium based on images obtained using micro-computed tomography. A revised phylogenetic analysis confirms placement ofDenazinemys nodosaclose toEubaena cephalicaandBoremysspp. within the clade Eubaeninae. Comparison with a second skull from the Kaiparowits Formation previously assigned toDenazinemys nodosaquestions its referral to this taxon. An assortment of specimens from the Early to Late Campanian of Mexico and the USA had previously been referred toDenazinemys nodosabased on shell surface texture alone, even though this characteristic is known to occur in other baenids. Our review of all available material concludes thatDenazinemys nodosais currently only known from the Late Campanian of New Mexico and Utah.

     
    more » « less
    Free, publicly-accessible full text available July 31, 2024
  9. Abstract It is often assumed that electron backscatter and continuum (bremsstrahlung) productions emitted from electron-solid interactions during X-ray microanalysis in compounds can be extrapolated from pure element observations by means of the assumption of average atomic number, or Z-bar (Z¯). For pure elements the average Z is equal to the atomic number, but this direct approach fails for compounds. The use of simple atomic fractions yields completely spurious results, and while the commonly used mass fraction Z averaging produces fairly reasonable results, we know from physical considerations that the mass of the neutron plays only a negligible role in such interactions below ∼1 MeV. Therefore, including the mass or atomic weight in such calculations can only introduce further errors in these models. We present an expression utilizing atomic fractions of the atomic numbers of the elements in the compound (Z fraction), with an exponent to account for the variation in nuclear screening as a function of the element Z value. 
    more » « less
    Free, publicly-accessible full text available July 14, 2024